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IMPLICIT SCHEMES FOR UNSTEADY EULER 
EQUATIONS O N  TRIANGULAR MESHES 
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Ofice National d’Etudes et de Recherches Airospatiales, 29 Avenue de la Division Leclerc, F-92322 Chatillon, France 

SUMMARY 
An implicit finite element method is presented for the solution of steady and unsteady inviscid compressible 
flows on triangular meshes under transonic conditions. The method involves a first-order time-stepping 
scheme with a finite element discretization that reduces to  central differencing on a rectangular mesh. On 
a solid wall the slip condition is prescribed and the pressure is obtained from an approximation of the 
normal momentum equation. With this solver no artificial viscosity is added to ensure the success of the 
calculation. Numerical examples are given for steady and unsteady cases. 
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1.  INTRODUCTION 

The problem of unsteady transonic flow is of great interest to aeroelasticians who have to 
determine unsteady aerodynamic loads on aerofoils over a wide range of Mach number and 
reduced frequency. A large number of calculation methods are based on the solution of transonic 
small-disturbance and full potential equations.‘-3 

Considerable progress has been made over the past decade in developing algorithms for the 
solution of the Euler and Navier-Stokes equations using unstructured meshes.”” Many of the 
methods that are currently being developed are based on extensions of finite difference schemes 
constructed from Taylor expansions to unstructured meshes. The finite element method is then 
used to construct the space of approximation. The resultant unstructured grid flow solvers differ 
in terms of the time-dependent discretization, the integration rules, the boundary conditions or 
the artificial viscosity term used. Following this approach, we are interested in the family of 
centred implicit schemes of second order devised originally by Leratf6-17 and Lerat et al. Is and 
more recently by Lerat and Sides.” With their last implicit centred scheme, Lerat and Sides are 
able to calculate steady transonic flows with shock waves on structured grids without artificial 
viscosity. Our work consists of developing an implicit scheme for unstructured meshes which 
has the same property. 

An algorithm for the solution of the time-dependent Euler equations is presented for unsteady 
aerodynamic analysis of oscillating aerofoils. This algorithm is developed for use on an 
unstructured mesh made up of triangles. This scheme can be implemented in two phases, one 
explicit and one implicit, which arise at each time step. The explicit stage is a two-step, 
second-order-accurate one and the implicit stage is based on the spectral radius method of Lerat 
et al. 

A finite element discretization is then applied to the time-dependent scheme, with specific 
integration rules to compute non-linear terms. The linear system which results from the 
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implicit stage is resolved component by component using a preconditioned conjugate gradient 
method. 

The numerical method is slightly modified for unsteady applications following the approach 
developed by Sens2’ on structured grids. Finally, some theoretical results are given in the ID 
case for both steady and unsteady methods. 

Another aspect of the work concerns wall boundary conditions, which are treated here in a 
strong way. First we consider the special case of a solid fixed wall on which the slip condition 
is prescribed; we indicate the procedure used to calculate the pressure. To treat aeroelastic 
problems on a fixed mesh, we modify the solid wall boundary conditions in order to introduce 
a small displacement or deformation hypothesis. We present the approach used to calculate the 
pressure in full detail. In both steady and unsteady cases the complete boundary field is 
determined by extrapolation. 

In order to assess the Euler solver and the wall boundary conditions, calculations were 
performed for two AGARD aerofoils in the frequently critical transonic speed regime. With this 
solver no artificial viscosity is added to ensure the success of the calculation. 

2. GOVERNING EQUATIONS 

The equations under consideration are the compressible Euler equations, which can be written 
for a two-dimensional flow with respect to a Cartesian co-ordinate system (x, y) as 

where 

W =  

( E  + P)u 

(E pv”p). + P)u 

The subscripts t, x and y in equation (1) denote the time and space partial derivatives, with 
(x, y) E R c R2, R being a bounded fixed open set delimited by r, the connection of boundaries 
which are supposed to be of class Co and C’ by parts. 

Here u and u denote the velocity components with respect to the Cartesian co-ordinate system, 
p is the density, P is the pressure and E = pe, e being the total energy. The equation set is 
completed by the addition of an equation of state; assuming the fluid to be an ideal gas, this 
takes the form 

P = ( y  - 1)[E - fp(u2 + v2)], 

where y is the ratio of the specific heats. The problem to be solved is then defined by the 
specification of appropriate boundary conditions. 

We denote A(w) and B(w) the Jacobian matrices of the flux functions, i.e. 

We denote U.V the Euclidean scalar product of U and V in R2 and )I U(I the associated norm. 
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3. IMPLICIT SOLUTION ALGORITHM 

The time-stepping scheme adopted here derives from the family of centred implicit schemes of 
second order devised originally by Lerat and co-workers.' 6-' 

This scheme can be implemented in two phases which arise at  each time step. In A-form one 
gets 

(i) explicit stage 

At2 At2 
2 2 AW + - [ (A")2(A~),  + A"B"(Aw),], + p - [B"A"(Aw), + (B")2(A~),], = AG, (3) 

(iii) updating 

w"" = W" + Aw, 

where, A" = A(w"), B" = B(w"),f" =f(w"), g" = g(w"), Aw = w"' ' - w", W" is the numerical 
solution at time level t = nAt and p is a real parameter. 

The algorithm described above possesses excellent accuracy characteristics with appropriate 
space appro~imation. '~  However, when it is applied to systems of equations, it has the 
disadvantage of requiring the evaluation and subsequent multiplication of the matrices A and 
B, especially in its implicit stage. These operations are very time-consuming. 

In order to avoid this, the computation of the explicit stage (2) is organized in a two-step 
fashion which can be shown to have the same order of accuracy." The implicit stage (3) is then 
simplified. The crossed derivatives are suppressed and the spectral radii p A  and pe are 
substituted for the matrices A and B. These simplifications do not alter the formal order of 
accuracy, since the implicit term is of the order of At3. 

Clearly we obtain 

(i) explicit stage 
(a) predictor 

(b) corrector 

(ii) implicit stage 

where f"" = f ( w " + " )  and a is a real parameter. 

We can note that the term AG as defined in equations (4) and ( 5 )  is just the increment which 
results from applying the explicit Runge-Kutta scheme of second order to equation (1). The 
two-steps form (4), (5) is commonly used with the choice of 0.5 as the value for a4*5*7*12. 
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4. FINITE ELEMENT DISCRETIZATION 

The spatial solution domain R is a bounded polygonal domain whose boundary is denoted by 
r. A triangulation Yh with characteristic mesh spacing h is introduced on R. The vertices of 
the triangles define a set of computation nodes, S, where the numerical solution of (1) is to be 
computed. From T h ,  we derive a space of functions which are piecewise linear on each triangle 
T of Th and continuous on R. The set (N,) ,  is a basis of V defined to be such that 

N i = {  1 atnodeS,, 
0 at all other nodes. 

A space A of functions which are piecewise constant on each element Tof F h  is also introduced. 
The set (n,),,, is a basis of A: 

1 if(x, y ) ~  T, 
0 elsewhere. 

Multiplying (4) by n, and integrating by parts, we get for each triangle T 

dx dy = W” dx dy - ciAt (f”n” + g”ny) da, (7) jT W”+” IT la: 
where dTand n = (ax, ny) denote respectively the boundary of element Tand the outward vector 
normal to dT. 

Multiplying (5 )  and (6) by N ,  and integrating over R, one gets for each node Si of F h  

(9) 
aN. In [AWN, - S - 2 ( d A w ,  2 ax + &AwY 

where the upper indices * and *+ correspond to numerical integrations which are given further 
on. 

Here Dirichlet conditions have been imposed on the boundary r. The integral over the surface 
r of the domain 52 then vanishes when the divergence theorem is applied to equations (8) and (9). 

In the explicit stage (7), (8) the quadrature formulations used to compute non-linear terms are 

J,* F dx dy = 1 +Fi meas(T), 
( i : ,  ) 

F dx dy = F(SG) meas(T), 

where Fi is the S,-nodal value of F on element T and SG is the element centre of gravity. 

Remarks 

predictor (7) as Zienkiewicz et aL5 or Koschel e f  a1.’ 
With these choices for the numerical integration we obtain the same formulation for the 
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In the weak formulation Dirichlet conditions have been imposed. The procedure used to 
determine the unknowns on a wall is presented further on. 

The explicit formulation (7), (8) with the choice (lo), (11) comes from results established by 
Lerat2' in the 1D case on explicit schemes. It differs from the formulation previously described 
in Reference 12. These two formulations will be compared further in the 1D case. 

The linear system which results from (9) is resolved component by component using 
a preconditioned conjugate gradient method. Since the implicit matrix of (9) is a symmetric 
positive definite matrix, we compute only a local upper triangular matrix on each element. 
In order to preserve a reasonable size memory, the matrix is not assembled. As precon- 
ditioner matrix we use the diagonal matrix of (9). The algorithm is initialized from the explicit 
lumped mass matrix.23 Desirable vectorization properties can be exploited if volume elements 
are arranged in coloured groups defined such that two elements of the same group have no 
common nodes. 

5 .  UNSTEADY CASE 

The implicit method (7H9) must be modified for unsteady applications. The procedure used 
follows the approach developed by Sens2' on structured grids. 

The implicit method of second-order accuracy proposed here has a time step that is not limited 
by the Courant-Friedrich-Levy (CFL) condition. In order to accelerate the convergence to the 
steady state, local time stepping is used. The method then has an internal dissipation which is 
sufficient to ensure the success of the calculation without any artificial viscosity. 

For unsteady applications a global time step must be used because of the time accuracy 
requirement. For solutions with large gradients concentrated in narrow regions, meshes with a 
large variation in element size must be constructed. The global time step will be governed by 
the portions of the mesh that have the smallest spacing. As a consequence, a very small element 
Courant number is obtained for those portions of the mesh where the node spacing is large. 
The internal dissipation is no longer sufficient everywhere and some spurious oscillations can 
appear. To increase the internal dissipation in unsteady applications, we modify the time step 
At2 connected with the second-order implicit term in (9) by 

At2 - + % A t  + AtT)& 

and the time step which arises in (7) by 

At -+ #At + AtT), 

where At, is the local time step defined on ?: 

second-order accuracy if we define 
The method has formally first-order accuracy in time. However, it is possible to have locally 

At = min AtT. 
T 

6. 1D PROBLEMS 

The domain SZ is divided into a set of non-overlapping subintervals with equal-length elements 
h. The scheme (7H9) leads to the following equations at node j of the mesh: 
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(i) explicit stage 

(ii) implicit stage 

Awj + %Awj+ 1 - 2Awj + Awj- 1) + /3(0’/2) 
C(Pi)j+ 1/2(Awj+ 1 - Awj) - (Pi)j-  IjZ(Awj - Awj- 1)I = AGj2;., (14) 

where f;+’TlZ = f(w;&), f ;+ l i z  = f(w;+ 112) and CJ = At/h. 

The subscripts R in equation (13a) and S in equation (13b) correspond to different discretiza- 
tions of the non-linear terms in equation (9). 

Several choices are possible for the discretization of the non-linear terms and lead to distinct 
approximations. In equation (1 3a) the numerical integration is performed using equation (1 l), 
while equations (10) and (11) are used to obtain formulation (13b). The scheme (12), (13b) is a 
variant of S; schemes. 

In the particular case described here we can note that2’ 

the steady weak solutions of the exact system (1) given by f (w) = constant are solutions of the 
scheme (12), (13b) and conversely. This is not the casefor the scheme (12), (13a). 

The second difference comes from integration rules used to calculate the flux f at the point 
x = ( j  + f ) s x .  We denote trapezoidal and midpoint rules respectively by 

Assuming that j and w can be written as Taylor expansions around the nearby origin ( x i ,  cn), 
one gets the relation 

wheref”(w) is a bilinear application of R”. A positive term occurs on the right-hand side of 
equation (15) which may be interpreted as a dissipative term. 

In the linear case these schemes are identical and belong to the family of second-order implicit 
methods of Lerat”s2’ which have the following properties. 

The implicit scheme (12H14) is linearly stable, linearly dissipative (except at a point where A 
is singular) and linearly SDD (strictly diagonally dominant) without any conditions on the CFL 
number and if only if the parameter p is chosen as 
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For unsteady applications the implicit scheme can be written as 

(i) explicit stage 

(ii) implicit stage 

Awj + gAwj+ l  - 2Awj + Awj-1) + j 

Proposition 

The unsteady implicit scheme is linearly stable, linearly dissipative (except at a point where 
A is singular) and linearly SDD (strictly diagonally dominant) without any condition on the 
CFL number if and only if the parameter B and the time step At' are chosen as 

p <  -f and A t ' 2 A t .  

7. BOUNDARY CONDITIONS 

Here we consider domains of computation related to external flows around bodies. The boundary 
r breaks down into a subsonic inflow or outflow boundary and a solid wall. In order to calculate 
the field w on each of these boundaries, we must consider the conditions to be prescribed and 
those to be calculated. 

For the 2D Euler equations the set of these conditions must constitute a system of four linearly 
independent equations. We shall refer to this as a strong application of boundary conditions as 
opposed to a weak treatment. 

The treatments used to calculate 'numerical' boundary conditions are e.g. extrapolation or 
the method of compatibility relations due to Viviand and V e ~ i l l o t . ~ ~  

In the case of a fluid boundary (inflow or outflow) the parameters are extrapolated according 
to the mesh lines."The particular case of a solid wall is now discussed in the context of the 
steady flow around a fixed body and then in the case of the unsteady flow over a moving wall. 

Let sl, s2 and s j  be the local vertices of an element T which intersects r (see Figure l), 
dT = dT12 u (dT13 u i?T2,) be the boundary of 7: W = ( p ,  A, B, E) be the field on dT12 with 
A = p u  and B = pa ,  V = (il,ii) be the fluid velocity and wi = ( p i ,  Ai, Bi, Ei) be the field at node Si. 

- - -  

7 .1 .  Boundary condition : $xed wall 

On a rigid wall the slip condition is prescribed as 

V * n = O  
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Figure 1 .  Computation of the slip condition 

and the numerical flux depends only on the pressure, i.e. 

d T , >  (fn” + gnY) do = P ( ) ,  s 
where n = (nx, n’) denotes the outward vector normal to dTI2. 

and S i d t ~ ’ ’ . ~ ~  for their implicit scheme. 

integral which results at the steady state: 

The procedure adopted here to calculate the pressure follows an approach advocated by Lerat 

On each triangle Tof fl which intersects r we can write the contribution of the boundary 

laT ( f n x  + gn’) d a  = 0 

or 

The pressure is then obtained from a linear combination of the discrete form of the x- and 
y-momentum equations as 

P(n”)2 + P(n’)2 = -(Fin” + F::n’), (19) 

where the fluxes F: and FC denote the second and third components of the right-hand side of 
equation (18) respectively. 

One gets for the pressure 

- -1 
P = - ~ _ _  (FCn” + F;ny).  

(nx)2  + (n’)* 
- - -  

On a boundary element the field W = ( p ,  A, B, E)T is obtained by extrapolating quantities such 
as the entropy, enthalpy and fluid velocity direction. The field w i  at node Si is then defined as 
the mean of W on the left and right sides of node Si, weighted by non-uniform mesh spacings. 
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- 
F(W, n) = (P. n)W + P 
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0 
nx 
ny 
P. n 

7.2. Boundary condition: moving wall 

For a mobile solid wall boundary the slip condition must be written as 

( V -  Vp).n(t) = 0, (21) 

where Vp = Vp(t) and n(t)  denote the velocity and the instantaneous normal of the aerofoil on 
the surface of the wall respectively. 

An exact formulation can be used to compute the case of motion of a rigid body or a 
deformable body.17 In the case of motion of a deformable body, however, a variable mesh must 
be used over time as was done in Reference 26. In the framework of aeroelastic applications it 
is legitimate to introduce a hypothesis of small displacement or deformation, which allows an 
invariable mesh to be used through time in all cases as was done in References 12 and 27. In 
this case the motion is then taken into account using a blowing condition on the wall. 

The procedure used to calculate the pressure P on a fixed wall was extended to the unsteady 
case in Reference 20 for the problem of rigid body motion on structured grids. Here we propose 
to extend this algorithm to unstructured meshes. 

On each triable 7’ of C2 which intersects r we approximate the system of Euler equations in 
intetral form as 

meas( T ) A w  = - A t  F(w, n) da, 6, 

As before, we split the right-hand side of (22) in such a way that the boundary flux on dTl, 
appears. The two scalar equations of interest correspond to momentum equations as in the case 
of a fixed wall. Using the result of (23), we thus have 

(24) 

(25) 

( A  - 2) meas(T) = -At [F:  + A ( V - n )  + Pnx],  

( B  - B”) meas(T) = - A t [ F ;  + B(P. n)  + Pn’], 

where F: and F: are the second and third components of the numerical flux over aT,, u aT,, 
respectively. In equations (24) and (25) the pressure P, the normal n and the scalar P- n are those 
defined on aTl,; they are taken into account at time level t = (n + 1)At like the components A 
and B without the upper index. 

Multiplying (24) by nx and (25)  by ny and summing leads to the equation 

meas(T) - P[(n”)’ + (n’)2] = - ~ [ (A  - 2 ) n x  + ( B  - B”)nY] - Finx - FEnY - ( V .  n)(Anx + Bn’). 
At 

(26) 
To proceed further, we must approximate V .  n and the density p .  

Let n and T be the fixed normal and tangent basis vectors respectively of the boundary dT,,, 
with J ( n J J  = JJtJJ, and n(t) and z( t )  be the instantaneous normal and tangent basis vectors 
respectively of aTl, at time level t = (n + l)At, with IIn(r)ll = IIr(t)ll. 
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The fluid velocity V on the local basis n, 7 can be written as 

811n112 = ( 8 . n ) n  + ( 8 . 7 ) ~ .  

Multiplying (27) by n(t)  and using the slip condition (21) gives 

[ VP . n(t)]  1 1  n 1 1  = (8. n)n . n(t) + ( 7. T)T - n(t). 

Thus we have 

where the tangent fluid velocity is now evaluated at time level t = nAt. 

using the equation of continuity. We thus have 
The density p can be expressed by constructing an approximation of first order in time and 

(0 - p") meas(T) = -Af[F: + p ( P .  n)] 

or 

p[meas(T) + At(V. n)]  = p" meas(T) - AtF;. (29) 

The results of equations (28) and (29) are introduced into equation (27) to give the pressure. 
In order to determine the field W on the boundary, we extrapolate the entropy 6, and the 

enthalpy H ,  from internal node s3. One gets 

The fluid velocity 
(21) is used to give 

is now decomposed on the instantaneous basis n(t), 7(t )  and the slip condition 

(31) P/ln(t)l12 = ( V p .  n(t))n(t)  + (8. 7(t))7(r). 

From (30) and (31) we can express 

lIV.7(t)ll2 = V211n(t)l12 - i18p.n(t)112. 

To determine the fluid velocity V, we extrapolate E = sign[V3. n(t)] ,  where V,  is the fluid velocity 
at internal node s3 (see Figure 1). 

Finally one gets 

- [ V P . n ( t ) ] n ( t )  + ~l lV.s ( t ) l l r ( t )  T/ = __ 
II no) / I  

The field wi  at node Si is then defined as the mean of the boundary field W on the left and right 
sides of node Si, weighted by non-uniform mesh  spacing^.^^*^^ 

8. NUMERICAL RESULTS 

To assess the Euler solver, calculations were performed for two AGARD aer~foils,~'  the 
NACA64A006 and NACA64A010 aerofoils, in the frequently critical transonic speed regime. As 
a first step the implicit method is used to compute as a limit the steady flows over the aerofoils. 
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In this case a local time step is used to enhance the convergence rate and internal dissipation 
in order to avoid spurious oscillations. The local time step is such that the local CFL number 
is uniform all over the spatial mesh and does not vary in time throughout the pseudo-unsteady 
evolution. As described in Reference 31, we compute for each element a time step At, using the 
element dimensions. Here the element dimensions correspond to the square root of meas( T).  
This time step is used to perform the first stage (predictor) and the implicit stage. A nodal time 
step AT, is then chosen to be the minimum of the ATT corresponding to the elements surrounding 
this node. 

For unsteady applications the nodal time step Ats is uniform over all the spatial mesh to 
preserve accuracy. As a consequence, a local Courant number follows and the maximum CFL 
number allowed is governed by the portions of the mesh with the smallest spacing. 

8.1. NACA64A006 aerofoil with an oscillating Jlap 

We have considered the transonic flow over the NACA64A006 aerofoil with a quarter-chord 
oscillating trailing edge flap. The freestream Mach number is M, = 0.875 and the deflection 
angle of the flap is given by 

d ( t )  = 6, + 6, sin(wt) 

where the steady deflection angle of attack is 6, = O", the amplitude is 6, = 1" and o is the 
angular frequency. The reduced frequency k defined by wC/V,  (where C denotes the chord and 
V, the freestream velocity) is equal to 0.470. 

The computational mesh includes 4989 nodes, 224 of which lie on the aerofoil surface, and 
8296 elements (Figure 2). the mesh extends to six chord lengths from the aerofoil. Away from 

Figure 2. Computational mesh for the NACA64A006 aerofoil including 4989 nodes and 8296 elements (partial view) 
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the aerofoil the mesh size grows quickly in such a way that a mesh-enriching technique or a 
dynamic mesh must be used to capture shocks and slip lines properly. 

The initial state is the steady flow over the aerofoil at rest in its initial location. It is computed 
by the present method from uniform initial data. The steady state calculation is achieved using 
1947 interations (root-mean-square residues on the physical quantities less than low6) and a 
CFL number of 4 in a CPU time of 250 s on a Cray XMP18 computer. This calculation is per- 
formed without taking into account the symmetry of the flow. The convergence history, the 
pressure distribution on the aerofoil and the entropy error are presented in Figure 3. Away from 
the leading edge the entropy error is very low. 

Putting the flap in motion gives rise to an unsteady flow. The unsteady pressure distributions 
on the aerofoil are shown on Figure 4 at various moments of the periodic evolution. Only half 
of the cycle is presented, since a phase shift of 180" simply exchanges the pressure curves on the 
upper and lower surfaces in the present case. In the vicinity of the aerofoil the periodic regime 
is established after four cycles of oscillatory flap motion, as can be seen from the lift coefficient 
(Figure 5). Figure 6 shows the harmonic analysis of the unsteady upper pressure coefficient. The 
numerical results compare fairly well with experimental data given by Zwaan in Reference 32. 
Note that viscous effects are not taken into account in the numerical model. With a CFL number 
equal to 6, 2580 time steps are necessary to describe a cycle of oscillatory flap motion. 

\;. - p ... pu - -  pv -- E 
Figure 3. Steady solution around the NACA64A006 aerofoil at M ,  = 0.875 and 6 = 0": (a) convergence history; (b) 

steady pressure distribution; (c) entropy 



0. I' 0.70.. 

dspl - Lower Upper 

S 

< I ,  
I -  t.) 

Figure 3. (Continued) 
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Figure 4. Unsteady pressure distribution for the NACA64A006 aerofoil with an oscillating flap at M ,  = 0.875, 
a(t) = sin(ot) and k = 0.470 
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Figure 4. (Continued) 
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Figure 5. Lift coefficient after three cycles at M, = 0.875, a(t)  = sin(ot) and k = 0.470 

-m .. kp .m.p o k q q  

Figure 6. Harmonic analysis of the unsteady upper pressure coefficient: real and imaginary parts 
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The CPU time for the unsteady calculation is 220 s per cycle on the Cray XPM18 computer, 
so that it takes 880 s in total to achieve the whole calculation. 

8.2. NACA64AOIO aerofoil oscillating in pitch 

The second application concerns the unsteady flow over the NACA64AOIO aerofoil oscillating 
in pitch about the quarter-chord. The freestream Mach number M ,  is equal to 0.796 and the 
aerofoil pitches about a mean angle of attack 

a(t) = a, + a, sin(ot) 

where the steady angle of attack is a, = 0", the amplitude is a, = 1'01' and the reduced frequency 
k is equal to 0.404. 

The computational mesh includes 3813 nodes, 224 of which lie on the aerofoil surface, and 
7343 elements (Figure 7). The initial steady state corresponding to the initial conditions 
M ,  = 0.796 and a = a, = 0" is presented on Figure 8. One can observe a small difference on 
the upper and lower pressure distributions which comes from the aerofoil definit i~n.~'  The 
steady state calculation is achieved using 1886 iterations and a CFL number of 4 in a CPU 
time of 195 s. To specify the maximal shock wave evolution during the pitching motion, we 
present in Figure 9 the steady solution obtained for a, = l"01. 

The steady field obtained for M ,  = 0.796 and a = a, = 0" is then used to initialize the 
unsteady calculation. The unsteady pressure distributions on the aerofoil are shown in Figure 
10 at various moments of the periodic evolution (after three cycles). Figure 11 shows the variation 
in the lift coefficient with pitching angle for the whole time history of four calculated cycles of 
oscillations. The harmonic analysis of the unsteady upper pressure coefficient is shown in 

Figure 7. Computational mesh for the NACA64A010 aerofoil including 3813 nodes and 7343 elements (partial view) 
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Figure 8. Steady solution around the NACA64A010 aerofoil at M, = 0.796 and a = 0": (a) convergence history; (b) 
steady pressure distribution; (c) entropy 
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Figure 9. Steady solution around the NACA64A010 aerofoil ar M ,  = 0.796 and a = 1"Ol': (a) pressure distribution; 
(b) entropy 

Figure 10. Unsteady pressure distribution for the NACA64A010 aerofoil oscillating in pitch at M ,  = 0.796, 
a(t) = l"O1' sin(wt) and k = 0.404 
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Figure 10. (Continued) 
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Figure 11. Time history of the lift coefficient for the NACA64A010 aerofoil oscillating in pitch at M ,  = 0.796, 

a(t) = l"01' sin(wt) and k = 0.404 
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Figure 12. Harmonic analysis of the unsteady upper pressure coefficient: real and imaginary parts 
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Figure 12. For this case we have experimental data of Davis.32 The numerical and experimental 
results show good agreement. The unsteady calculation is performed using a CFL number of 
6. The number of time steps needed to calculate a cycle is 2790 and the global CPU time is 860 s. 

9. CONCLUSIONS 

An implicit finite element method has been developed for the solution of the 2D unsteady Euler 
equations. The flow solver involves an implicit time-dependent scheme with a finite element 
discretization for use on an unstructured mesh made up of triangles. Another significant aspect 
of the research is the implementation of boundary conditions on a solid mobile wall which allow 
us to keep a fixed mesh. With this solver no artificial viscosity is added to ensure the success 
of steady and unsteady calculations. As far as the unsteady case shown here is concerned, the 
results on the aerofoil surface fit fairly well with those reported in Reference 32. 

As an application, the authors have recently used this implicit finite element method to 
calculate the internal flow of an inviscid fluid in two-dimensional turbine or compressor cascade 
blades. The first results seem to be promising. 

The current effort is being directed towards extending this method to three-dimensional flows 
using tetrahedral grids for unsteady aerodynamic and aeroelastic analysis of complete aircraft 
configurations. 
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